Polymer ferroelectrets: Novel materials with built-in functionality

Siegfried Bauer

Soft Matter Physics
Johannes-Kepler University,
Linz, Austria

Traditional charge electrets

Electret: Dielectric material with quasi-permanent electrical charge surface charges

- ──> Employed wherever large external fields are required
- Applications in acoustical transducers (microphones, headphones...)
- Nonpolar materials ⇒ no pyro-, piezoelectricity

Modern charge electrets: ferroelectrets

ferroelectrets (cellular space-charge electrets)

combine features of ferroelectrics and space-charge electrets

novel class of soft transducer materials

Natural cellular materials

Nature employs the concept of cellular materials for extending the property range of solid materials

Synthetic cellular materials

Open- and closed-cell polyurethane foams

Engineers benefit from the foam concept by extending the materials property range for applications in

thermal insulation, packaging, mechanical energy absorption,...

Material properties of solid and cellular materials

Synthetic functional foams

Cellular polymer with flat, lenselike voids

SEM picture

schematic view

Microscopic origin of the internal charging of cellular materials

Dielectric barrier microdischarges (partial discharges)

Light emisssion during charging

Direct visualization of the negative charges by SEM

J. Hillenbrand and G. M. Sessler CEIDP (2000)

Piezoelectricity in ferroelectric polymers

PVDF

Piezoelectricity in ferroelectric polymers

Dipole density piezoelectricity

 $d_{33} = -30 \text{ pC/N}$

ferroelectrets

more sensitive piezoelectric polymers polymers with intrinsic piezoelectricity

Piezoelectricity in ferroelectrets

Piezoelectricity in ferroelectrets

strong deformation of the macroscopic dipole

intrinsic piezoelectricity

In-plane anisotropy of voids in polypropylene foams

implications for piezoelectric properties?

Dielectric resonance spectroscopy on ferroelectrets

G. S. Neugschwandtner et al. Appl. Phys. Lett. Vol. 77 (2000)

resonance in dielectric function

Piezoelectric resonances in the dielectric function of PP foams

Measurement of elastic and piezoelectric properties of cellular polymers

Elastic properties of cellular PP

Nonlinear elastic response

Nonlinear elastic and piezoelectric responses of PP foams

Comparison of piezoelectric materials

piezoelectric material	Young modulus (GPa)	d ₃₃ (pC/N)
quartz	72	2 (d ₁₁)
PZT	50	360
PVDF	2	20
PP	0.002	200-600

Ferroelectrets: extremely soft and sensitive transducer materials

Cellular materials: Ferroelectrets

Close analogies to ferroelectric materials

Hysteresis phenomena in ferroelectric materials

Displacement and mechanical strain vs. field

Ferroelectric-like properties: Dielectric and electromechanical hysteresis

Poster: I. Graz et al.: A Fairytale of ferroelectricity

Patterned charging and converse piezoelectricity of ferroelectrets

Patterned charging \Rightarrow switching of the piezoelectric response

Focussing ultrasound with an acoustical Fresnel zone plate

electrode pattern of an acoustical Fresnel lens

Sound pressure of a five-element acoustical Fresnel zone plate

ultrasound foci along the main axis and in the focal plane

with present materials air-borne ultrasound up to 600kHz possible

Summary

Ferroelectrets

- New material class for electromechanical energy conversion
- Attractive for large area transducers and air-borne ultrasound

Acknowledgments

